答案:解:(1)设所求正比例函数的解析式为把 ,y=5代入上式得 ,解之,得∴所求正比例函数的解析式为(2)设所求一次函数的解析式为∵此图象经过A(-1,2)、B(3,-5)两点,此两点的坐标必满足 ,将 、y=2和x=3、 分别代入上式,得解得∴此一次函数的解析式为点评:(1) 不能化成带分数.(2)所设定的解析式中有几个待定系数,就需根据已知条件列几个方程.例2. 拖拉机开始工作时,油箱中有油20升,如果每小时耗油5升,求油箱中的剩余油量Q(升)与工作时间t(时)之间的函数关系式,指出自变量x的取值范围,并且画出图象.分析:拖拉机一小时耗油5升,t小时耗油5t升,以20升减去5t升就是余下的油量.解:图象如下图所示点评:注意函数自变量的取值范围.该图象要根据自变量的取值范围而定,它是一条线段,而不是一条直线.例3. 已知一次函数的图象经过点P(-2,0),且与两坐标轴截得的三角形面积为3,求此一次函数的解析式.分析:从图中可以看出,过点P作一次函数的图象,和y轴的交点可能在y轴正半轴上,也可能在y轴负半轴上,因此应分两种情况进行研究,这就是分类讨论的数学思想方法.解:设所求一次函数解析式为∵点P的坐标为(-2,0)∴|OP|=2设函数图象与y轴交于点B(0,m)根据题意,SΔPOB=3∴∴|m|=3∴∴一次函数的图象与y轴交于B1(0,3)或B2(0,-3)将P(-2,0)及B1(0,3)或P(-2,0)及B2(0,-3)的坐标代入y=kx b中,得解得∴所求一次函数的解析式为点评:(1)本题用到分类讨论的数学思想方法.涉及过定点作直线和两条坐标轴相交的问题,一定要考虑到方向,是向哪个方向作.可结合图形直观地进行思考,防止丢掉一条直线.(2)涉及面积问题,选择直角三角形两条直角边乘积的一半,结果一定要得正值.[综合测试]